Pulling nanotubes from supported bilayers.
نویسندگان
چکیده
The force required to form a nanoscale tube from a supported lipid bilayer (SLB) by pulling was measured using an atomic force microscope (AFM). The equilibrium membrane shape during an AFM pulling experiment was calculated and used to derive a general force-distance relationship for pulling a tube from an SLB. We compare these theoretical results with our experimental data and determine the tube radius, the force required to elongate the tube, and, consequently, the surface tension. For a dioleoylphosphatidylcholine (DOPC) SLB, the tension was found to be close to membrane rupture during the pulling experiment.
منابع مشابه
Tethered or adsorbed supported lipid bilayers in nanotubes characterized by deuterium magic angle spinning NMR spectroscopy.
2H solid-state NMR experiments were performed under magic angle spinning on lipid bilayers oriented into nanotubes arrays, as a new method to assess the geometrical arrangement of the lipids. Orientational information is obtained from the intensities of the spinning sidebands. The lipid bilayers are formed by fusion of small unilamellar vesicles of DMPC-d54 inside a nanoporous anodic aluminum o...
متن کاملSupported lipid bilayer/carbon nanotube hybrids.
Carbon nanotube transistors combine molecular-scale dimensions with excellent electronic properties, offering unique opportunities for chemical and biological sensing. Here, we form supported lipid bilayers over single-walled carbon nanotube transistors. We first study the physical properties of the nanotube/supported lipid bilayer structure using fluorescence techniques. Whereas lipid molecule...
متن کاملDetection of single ion channel activity with carbon nanotubes
Many processes in life are based on ion currents and membrane voltages controlled by a sophisticated and diverse family of membrane proteins (ion channels), which are comparable in size to the most advanced nanoelectronic components currently under development. Here we demonstrate an electrical assay of individual ion channel activity by measuring the dynamic opening and closing of the ion chan...
متن کاملPreparation of a Novel Super Active Fischer-Tropsch Cobalt Catalyst Supported on Carbon Nanotubes
The potential of carbon nanotubes (CNT) supported cobalt catalysts for Fischer-Tropsch (FT) reaction is shown. Using the wet impregnation method cobalt on carbon nanotubes catalysts were prepared with cobalt loading varying from 15 to 45 wt. %. The catalysts are characterized by different methods including: BET physisorption, X-ray diffraction, hydrogen chemisorption, and temperature-progra...
متن کاملSpontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature.
Recent experimental studies on supported lipid bilayers and giant vesicles have shown that uni-lamellar membrane systems can undergo spontaneous tubulation, i.e., can form membrane tubules or nanotubes without the application of external forces. In the case of supported lipid bilayers, the tube formation was induced by the adsorption of antimicrobial peptides. In the case of giant vesicles, spo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 27 13 شماره
صفحات -
تاریخ انتشار 2011